• OVERVIEW
  • INTRODUCTION
  • CONTENT
  • AUTHORS
  • VIDEOS

Projects

Algebra 1

THE OVERLAND TRAIL Students look at mid-19th-century Western migration in terms of the many linear relationships involved.

ALL ABOUT ALICE The unit starts with a model based on Lewis Carroll's Alice's Adventures in Wonderland, through which students develop the basic principles for working with exponents.

THE PIT AND THE PENDULUM Exploring an excerpt from this Edgar Allan Poe classic, students use data from experiments and statistical ideas, such as standard deviation, to develop a formula for the period of a pendulum.

COOKIES In their work to maximize profits for a bakery, students deepen their understanding of the relationship between equations and inequalities and their graphs.

FIREWORKS The central problem of this unit involves sending up a rocket to create a fireworks display. This unit builds on the algebraic investigations of Year 1, with a special focus on quadratic expressions, equations, and functions.

Geometry

SHADOWS Students use principles about similar triangles and basic trigonometry to develop formulas for finding the length of a shadow.

GEOMETRY BY DESIGN Students explore the history of geometry and human design to learn the concepts of congruence, transformations, geometric construction, and proof.

DO BEES BUILD IT BEST? Students study surface area, volume, and trigonometry to answer the question, "What is the best shape for a honeycomb?"

ORCHARD HIDEOUT Students study circles and coordinate geometry to determine how long it will take before the trees in a circular orchard grow so large that someone standing at the center of the orchard cannot see out.

Algebra 2

SMALL WORLD, ISN'T IT? Beginning with a table of population data, students study situations involving rates of growth, develop the concept of slope, and then generalize this to the idea of the derivative.

THE GAME OF PIG Students develop a mathematical analysis for a complex game based on an area model for probability.

HIGH DIVE Using trigonometry, polar coordinates, and the physics of falling objects, students model this problem: When should a diver on a Ferris wheel aiming for a moving tub of water be released in order to create a splash instead of a splat?

THE WORLD OF FUNCTIONS In this unit, students explore families of functions in terms of various representations—tables, graphs, algebraic representations, and situations they can model; they also explore ways of combining functions using arithmetic operations and composition.

IS THERE REALLY A DIFFERENCE? Students build on prior experience with statistical ideas expanding their understanding of statistical analysis.